Translation Memory

Translation Memory (TM) is a database of the source strings and their corresponding translations into different languages that can speed up the translation of the same or similar strings in your projects. The project TM is created automatically for each project. Every translation made in the project is automatically added to the project TM.

Note: Translations made between identical languages won't be added to TM (e.g., from the English source language to the English target language).

Creating TM

Besides the project TMs that are automatically created along the respective projects, you can also create separate TMs, fill them with the appropriate content by uploading your existing TMs in TMX, XLSX, or CSV format, and then assign these TMs to the needed projects.

To create a TM, follow these steps:

  1. Open your organization’s Workspace and select Translation memories on the left sidebar.
  2. At the bottom right, click add.
    Create TM
  3. In the appeared dialog, name your TM and select a default language that will be displayed first in the table of TM records.
  4. (Optional) Click Select files to upload your existing TM. You can skip this step and upload a TM later.
  5. Click Create.
    Create TM Dialog

Managing TM Records

You can create TM records from scratch, edit and delete existing TM records of a particular TM or all available TMs.

Creating TM Records

To create a TM record, follow these steps:

  1. Open your organization’s Workspace and select Translation memories on the left sidebar.
  2. Click on the needed TM.
  3. Click Add record.
    Add Phrase
  4. In the appeared dialog, select the language from the drop-down menu and type the translation of the TM record.
  5. Click add Translation to add more translations for the TM record.
  6. Click Add record.
    Add Phrase Dialog

Editing TM Records

To edit a TM record, follow these steps:

  1. Open your organization’s Workspace and select Translation memories on the left sidebar.
  2. Click on the needed TM.
  3. Edit a TM record’s translation and press Ctrl+Enterto save changes.
    Edit TM Records

Deleting TM Records

You can delete one, multiple, or all the TM records at once.

To delete all the records from TM, follow these steps:

  1. Select the top checkbox above the TM record list.
  2. Confirm the selection of all TM records.
  3. Click . Deleting TM Records

Downloading and Uploading TM

To download or upload TMs, follow these steps:

  1. Open your project and go to Resources > Translation memories.
  2. Click on the needed TM.
  3. Click or .

The owner, admins and managers can download and upload TM in the following file formats: TMX, XLSX, or CSV.

Download and Upload Buttons

If you upload a TM in CSV or XLS/XLSX file formats, match columns with the corresponding languages in the configuration dialog. Configuring Columns for CSV/XLSX TMs

Downloading TM for Offline Management

When downloading a TM from Crowdin Enterprise in TMX format, you can get some additional metadata that might be useful for different usage scenarios with offline tools.

Additional TM attributes provided by translation memory downloaded in TMX format:

x-crowdin-metadata – String identifier hash.
creationid – Translation author’s full name and username in Crowdin Enterprise.
creationdate – Translation creation date.
changeid – Full name and username of the person who updated a translation.
changedate – Translation update date.
usagecount – Translation suggestion’s number of usages in Crowdin Enterprise.
lastusagedate – The last date a translation suggestion was used in Crowdin Enterprise.

Often translation vendors that work in Crowdin Enterprise export TMs from projects to manage them for their clients in various desktop applications (e.g., for cleaning TMs from irrelevant translations and further reimport back to Crowdin Enterprise). The TM attributes listed above allow better navigation and filtering of TM segments based on different criteria. Also, you might use cleaned and refreshed TMs to train MT engines only on product-specific data to ensure a higher quality of translations as a result.

Assigning TM

To assign a TM to your project, follow these steps:

  1. Open your project and go to Resources > Translation memories.
  2. Select the needed TMs from the list.

Assigning TM

Prioritizing TM

When you assign a few TMs to the project, you can set the needed priority for each of them. As a result, TM suggestions from the TM with the higher priority will be displayed in the first place.

The default TM priority value is set to 1. A higher number has a higher priority (for example, 5 has a higher priority than 1). For example, if you assigned four TMs to your project, you can set the priority of 4 to the most important TM, the one that should be used in the first place. And respectively set lower priorities to other TMs.

To set the priority for TMs, follow these steps:

  1. Open your project and go to Resources > Translation memories.
  2. In the Priority column, set the preferred priority for assigned TMs.

Prioritizing TM

Changing Default TM

To change your project’s default TM, follow these steps:

  1. Open your project and go to Resources > Translation memories.
  2. Click the star icon next to the needed TM from the list.

Changing Default TM

Sharing TMs

Using the shared TMs, you can pre-translate any of the projects in your organization. Also, TM suggestions from all TMs will appear in the Editor.

Note: If you want to share a TM between projects, the source language of both projects must match.

To share TMs between all of the projects in your organization, follow these steps:

  1. Open your organization’s Workspace and select Translation memories on the left sidebar.
  2. Select Share Translation Memories.
    Sharing TMs

Applying Translation Memory via Pre-translation

Pre-translation via TM allows you to leverage a configurable (40% to 100% match ratio) and Perfect matches.

Read more about Pre-translation.

Prioritizing TM Suggestions during the Pre-translation via TM

During the pre-translation via TM, the system considers multiple parameters to select the most relevant TM suggestion. If the system finds only one suitable TM suggestion for a string, it will be applied during the pre-translation via TM. If the system finds two or more TM suggestions for one string, they will be sorted based on multiple parameters and applies the most suitable one.

The following parameters are listed in the order the system uses them to decide which TM suggestion works better. If the decision can’t be made using the first parameter (i.e., two TM suggestions with 100% match), the system will use the next parameter until the decision is made.

  1. Relevance – also known as TM match. Read more about TM Match Calculation.
  2. Auto-Substitution usage – verifying whether the TM suggestion was improved by the auto-substitution. Read more about Auto-substitution.
  3. Assigned TM Priority – the priority of the TM a TM suggestion is stored in. Read more about Prioritizing TM.
  4. Primary or dialect language – the primary or dialect language usage in TM suggestion’s source text (e.g., a TM suggestion from English will have a higher priority than English, Canada).
  5. TM suggestion creation date – the date a TM suggestion was created (a TM suggestion with a more recent creation date will have a higher priority).

To better understand how TM suggestions are prioritized during the pre-translation via TM, let’s go through a few hypothetical scenarios. Let’s imagine you have an untranslated string in your project with the following source text Welcome!. Once you run the pre-translation via TM, the system starts to search for TM suggestions in your TMs.

  • The system finds two TM suggestions with the source text Welcome and Welcome!. The translation from the Welcome! TM suggestion will be used since it has a higher TM match.
  • The system finds two TM suggestions: Welcome! and Welcome!. Both have the same source text, so the system checks whether the auto-substitution was used to improve these TM suggestions and picks the one that wasn’t improved by the auto-substitution.
  • The system finds two TM suggestions: Welcome! and Welcome!. Both have the same source text, and both weren’t improved by the auto-substitution. Then the system checks the priority of the TMs these TM suggestions are stored in and picks the one stored in the TM with higher priority.
  • The system finds two TM suggestions: Welcome! and Welcome!. Both have the same source text, both weren’t improved by the auto-substitution, and both are stored in the TMs with the same priority. Then the system checks the source languages of the TM suggestions and picks the one that uses the primary language.
  • The system finds two TM suggestions: Welcome! and Welcome!. Both have the same source text, both weren’t improved by the auto-substitution, both are stored in the TMs with the same priority, and both use primary source languages. Then the system checks the TM suggestion creation date and picks the one with the latest date.

In rarer cases, there could be a situation when two or more TM suggestions are identical based on all the parameters listed above. In this case, the system picks the first one among identical.

TM Match Calculation

Crowdin Enterprise calculates the TM match by comparing the source string to be translated and TM’s existing segments.

There are three main types of TM matches:

  • Perfect Match - TM segment’s text and context completely matches the source string
  • 100% Match - TM segment’s text matches the source string, but the context is different
  • Fuzzy Match (99% and less) - TM segment’s text is different to a certain extent compared to the source string

If the Perfect and 100% TM match calculation is relatively straightforward, the fuzzy matches’ calculation may not be so obvious.

There are multiple different factors that affect the calculation of fuzzy matches, for example:

  • Word order
  • Punctuation
  • Formatting tags
  • Matches that are longer than the source string

TM Suggestions Fuzzy Match

Was this article helpful?